Wirtschaftswissenschaftliche Fakultät

Suche

Data Mining


AnsprechpartnerInnen: Prof. Dr. Yarema Okhrin, Anett Wins


Die umfangreichen Datenbestände von Unternehmen beinhalten wichtige Informationen für den Entscheider und erfordern die Anwendung von anspruchsvollen statistischen und mathematischen Verfahren, die unter Data-Mining-Verfahren zusammengefasst werden. Man betrachtet hier nicht eine Variable bzw. eine Charakteristik  isoliert, sondern das Zusammenwirken mehrerer Variablen zugleich, ihre Abhängigkeitsstruktur. Die Methoden werden zur explorativen Datenanalyse verwendet, z.B. zur Suche nach Strukturen und Besonderheiten in den Daten.

Themenbereiche:

Modellierung von Zähldaten

Modellierung von Wartezeiten

Hauptkomponenten- und Faktorenanalyse

Literatur:

  • Backhaus et al., 2011, Multivariate Analysemethoden – eine anwendungsorientierte Ein­führung, Springer
  • Backhaus et al., 2011, Fortgeschrittene Multivariate Analysemethoden – eine anwendungs­orien­tierte Einführung, Springer
  • James et al.; An Introduction to Statistical Learning - with Applications in R; 2013; Springer
    Download-Link: http://www-bcf.usc.edu/~gareth/ISL/getbook.html
  • Hastie et al.; The Elements of Statistical Learning – Data Mining, Inference and Prediction; 2009; Springer
  • Rencher, Methods of multivariate analysis, 2002, John Wiley & Sons Inc.
  • Nisbet et al., 2009, Handbook of Statistical Analysis and Data Mining Applications, Academic Press
  • Hand et al., 2001, Principles of Data Mining, The MIT Press
  • Runkler, 2010, Data Mining: Methoden und Algorithmen intelligenter Datenanalyse, Vieweg+Teubner
  • Bishop, Pattern Recognition and Machine Learning, 2006, Springer
  • Fahrmeir et al., Regression – Modelle, Methoden und Anwendungen, 2007, Springer
  • Tutz, Regression for Categorical Data, 2012, Cambridge Verlag
  • Toutenburg, Lineare Modelle – Theorie und Anwendungen, 2003, Physika Verlag
  • Kaufman, Rousseeuw; Finding Groups In Data – An Introduction to Cluster Analysis; 1990; Wiley&Sons
  • Breiman et al., Classification and Regression Trees, 1998, Chapman & Hall
  • A. Colin Cameron und Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications, Cambridge University Press